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1. Find the first 4 terms, in ascending powers of x, of the binomial expansion of

&)

giving each term in its simplest form.
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2. A geometric series has first term a, where a # 0, and common
The sum 1o infinity of this series is 6 times the first term of the s

(a) Show that r = =
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Given that the fourth term of this series is 62.5

(by find the value of a.

(¢) find the difference between the sum to infinity and the sum of the first 30 terms.
giving vour answer to 3 significant figures.
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Figure 1

Figure 1 shows a sketch of part of the curve with equation y = (2x = 1). x = 0.5

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the

lines with equations x = 2 and x = 10.

The table below shows corresponding vahies of x and y for v = J(2x — 1).
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(a) Complete the table with the values of v corresponding to x = 4 and x = 8.
(1

(b) Use the trapezium rule. with all the values of y in the completed table, to find an
approximate value for the area of R, giving your answer to 2 decimal places.

(3)

(¢) State whether vour approximate value in part (b) is an overestimate or an underestimate
for the area of R.
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Given that (x — 2) is a factor of f(x),

blank
4. fx) = —4x* + ax? + 9 — 18, where a %

(a) find the value of a,
(b) factorise f{x) completely.

(¢) find the remainder when {(x) is divided by (2x - 1).
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= (e =2) (2% -3)(2x43)
o
ot £(]- () 2 ¥({)H(L)- 18 =12

L MeMMawnoer 1S —\x
—

-7



https://mymathscloud.com

7 em )/

A 7 em B &

Figure 2

Figure 2 shows the shape ABCDEA which consisis of a right-angled triangle BCD joined
1o a sector ABDEA of a circle with radius 7 cm and centre B.

A, B and C lie on a straight line with A8 =7 cm.
Given that the size of angle ABD is exactly 2.1 radians.

(a) find, in cm. the length of the arc DEA.

2

(b find. in cim, the perimeter of the shape 4BCDEA. giving your answer
to 1 decimal place.

*

A avre =6 =IxT-V = 14 F

by & = m-2.\
BC = Flos(mw-2-\) = 3-53
cD= FSin(n-21)= 0%

P=31>
3

L

)]

@]

Figure 3

Figure 3 shows a sketch of part of the curve (" with equation

The curve € has a maximum turning point at the point 4 and a minimum turning point at
the origin ©).

The line { touches the curve  at the point 4 and cuts the curve € at the point B
The x coordinate of 4 is —4 and the x coordinate of B is 2.
A

The finite region R, shown shaded in Figure 3, is bounded by the curve C and the line /.

Use integration to find the arca of the {inite region .
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D Sin1©® = 4 SinZ20 -\
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(i) Solve, for 0 < & < 180°. the equation

sin 20 B
(4sin260 1)

giving your answers (o | decimal place.

(3
(i) Solve, for 0 < x < 2. the equation
Ssinfx—2cosx—5=10
giving your answers to 2 dgcimal places.
(Solutions bused entirely on graphical or numerical methods are not acceptable.)
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giving your answer 1o 3 significant figures. % (6 b g
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(i) Use algebra to find the values of x for which OO
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Figure 4
Figure 4 shows the plan of a pool.

The shape of the pool ABCDEFA consists of a rectangle B 'EF joined to an equilateral
triangle BFA and a semi-circle CDE, as shown in Figure 4.

Given that AR = x metres. EF = v metres. and the area of the pool is 50 m,

(a) show that

50 x
v = = =(r+2V3)
X 8
(3)
(b) Hence show that the perimeter, I melres, of the pool is given by
100 x
P=—+"Ax+8-203)
X 4
(3)
(¢) Use calculus to find the minimum value of /., giving vour answer (o
3 significant figures.
(3)

(d) Justify, by further differentiation, that the value of P that you have found is a minimum.
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Question 9 continued
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10. The circle , with centre 4, passes through the point 7w,
and the point () with coordinates (15, -10).

Given that PQ is a diameter of the circle .

(a) find the coordinates of 4.

(b) find an equation for C.

A point R also lies on the circle .
(Given that the length af the chord PR is 20 units,

- ~ 1 1 0 r
(c) find the length of the shortest distance from A to the chord PR
Give your answer as a surd in its simplest form.

2

(d) Find the size of the angle ARQ. giving vour answer to the nearest (.1 of a degree.
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